MATHEMATICS REVIEW 10

EXTREMA OF FUNCTIONS OF TWO VARIABLES

1. We now have a two-dimensional surface rather than a line. Let
us assume that our functions are everywhere (partially)
differentiable at least twice. At an extremum (peak/valley) the
tangent plane to the surface will be horizontal. Algebraically this
means that the first order partials, fx and fy, will be simultaneously
zero. A necessary condition for an extremum is that fx = fy = 0.

(xo0,Yo) is a stationary point of the function and z = f(xo,yo) is a
stationary/critical value.

2. Hunting Extrema: the procedure:
(i) Turn on your brain.
(if) Write down the function;
e.g., z=f(x,y) = 2x* + 3y + 2x - 2y + 9. (x,y) € R
(iii) Calculate the first order partial derivatives:
zx =4x + 2 and zy = 6y — 2.
(iv) Set the partials equal to zero

zx=zy =0

or 4x+2 =0
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By -2=0.
(v) Solve the simultaneous equations for xo, yo
Xo = -1/2 Yo = 1/3 .
3. Unfortunately our procedures locates two sorts of extrema
(maxima and minima) and does not provide a way to distinguish
between them, it also detects points in the plane where fx = fy = 0
for which no extremum exists -- saddle points (two-dimensional
analogues of points of inflection). To work out the possibilities we
use the following technique. Define the "discriminant" of the
function to be D(x,y) = fxx . fyy - (fxy)>.
Then
(a) if D(xo0,Y0) > 0 and fxx < O we have a relative maximum:;
(b) if D(x0,Y0) > 0 and fxx > 0 we have a relative minimum;
(c) if D(Xo,Y0) < 0 we have a saddle point;
(d) if D(Xo,Y0) = 0 the procedure fails.
In our example zxx = 4, zxy = 0, zyy = 6, zyx = 0 = zxy, and so
D(xo0,Yo0) = D(-1/2,1/3) = 4.6 - (0)>=24 >0
which (since zxx > 0) means we have a relative minimum.
4. Figure 1 provides a schematic representation of critical points,

stationary points, and extrema.
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5. Assume that
f: R°%R° - R

is a continuous function which is everywhere at least twice
continuously differentiable and which is strictly concave
(convex). These assumptions guarantee that the graph of the
function is hill (valley) shaped with a unique global maximum
(minimum) which lies in the interior of the (x,y) plane (see Figure
2). At an extremum the tangent plane to the two dimensional
surface, Gs, will be horizontal. From an algebraic point of view this
means that the first order partial derivatives, fy and f,, must be
simultaneously zero, i.e. at the stationary point of the function

fe=f,=0

which is the first order condition (necessary condition) for an
extremum of a function of two variables. This means that if the
function achieves a maximum or a minimum at (xo,yo) then the
equations of the two first order partial derivatives are
simultaneously equal to zero when we substitute xo for x and yp
for y. Notice that the two first order partial derivatives are
functions (i.e. they specify rules by which the ordered pairs in the
plane can be converted into unique values of z — the height of the
surface above the relevant point in the plane) but when we set
those partial derivatives equal to zero we convert the function
rules into a set of two simultaneous equations which can be
solved for x and y.

6. Unfortunately the first order conditions are only necessary for

an extremum to exist they are not sufficient conditions. The

-proposition A (e.g. “the real number x is less than two”) is a

necessary condition for the proposition B (e.g. “ the real number x

is less than ten”) if the condition B can only hold (be a true
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statement) if the proposition A holds (is true). This means that if
we know that B holds then A must necessarily hold too. On the
other hand if A (x is a human being) is a sufficient condition for B
(x is a male) then if A holds B must also hold.

The two types of logical conditions have very different
implications. In the case of a sufficient condition we start from the
truth or falsity of A since if A is true then B must also be true since
A is by itself sufficient to guarantee B.

On the other hand with necessary conditions we start with B since
B can only occur if A also occurs. Therefore if we know that B is
true then A must also be true, however the fact that A occurs
does not guarantee that B will occur because A is only required
for B to be true but it is not by itself enough to establish B.

7. Unfortunately fi = f; = 0 is a necessary condition for an
extremum not a sufficient condition, which means that if there is
an extremum at the point in the plane (xo,yo) then fi = f;= 0, but f; =
fi = 0 does not mean that there is an extremum at the point (xo,Yyo).
In other words while every extremum satisfies fi = f; = 0 we can
also have saddle points (see Figure 3) or a set of horizontal
points of inflection (see Figure 4). To sort out the possibilities
we use the following algebraic technique (which, of course does
not require us to plot complicated surfaces and which can be
readily generalized to functions of three or even n dimensions).

8. Define the “discriminant” of the function f to be D(xo,Yyo) =
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(1) D(xo0,Y¥0) > 0 and fy < 0 at (Xp,Yo) we have a maximum at
(Xo,Yo0)-

(2) D(xo,y0) > 0 and f > 0 at (Xo,yo) we have a minimum at
(Xo,Yo).

(3) D(xo,Yo) < 0 at (xo0,Yo) we have a saddle point at (xo,Yo).

(4) D(xo0,y0) = 0 at (xo0,y0) then the procedure fails and we need
more information to determine what is happening at (xo,Yo).

Note that in the case of two or more independent variables the
partials must not only exist at the stationary points but they
must also be continuous there.

Note that |H |= fix fiy = fufyy — fxdxy = frofyy — 2y

fyx Ty
is the Hessian determinant of the matrix of second order partial
derivatives of the function f. We use the Hessian determinants
to deal with the higher order cases — of course, if you do not
know what a determinant or a matrix is then this will not mean
anything to you.
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Figure 1
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Figure 2
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MATHEMATICAL REVIEW 11

FUNCTIONS OF TWO VARIABLES: CONSTRAINED
EXTREMIZATION

1. Microeconomics is largely concerned with scarcity and choice.
Mathematically we represent such problems as constrained
extrema — maxima or minima that satisfy some constraint:
consumers maximize utility subject to budget constraints
(associated with finite nominal incomes and positive prices), firms
maximize profits subject to demand and technological constraints
(embodied in a production function), firms also minimize the costs
of production (associated with positive input prices) incurred in the
production of the profit maximizing output, universities maximize
enroliment subject to financing constraints, etc.

In this general setting we often talk about objective functions
(the functions to be maximized or minimized) being extremized
subject to constraints. The problems take the form.

Max f(x1, ..., Xn)  or Min  f(x1, ..., Xn)
(X1, “eny Xn) (X1, ceay Xn)

subject to g(xi, ..., Xn) = C.
2. Specific economic examples would be:

Max U(xq, ..., Xp) = U
(X1, -y Xn)

st.ZPixi=My or Pixqs+Poxo +... +Pyx, = Mo.

or Max Q = Q(L,K)
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(L.K)
s.t. X pj Xj =wolL + rgK = TCy
where we have n = 2 factor inputs in this case.

The firm’s profit maximizing choice of inputs — labor and capital —
is an example of a two variable constrained extremum. There are
two ways in which we can formulate the problem, both of which
lead to the same solution. The first approach is to take the
production function as the objective function to be maximized
subject to the constraint that the firm has a given amount of
money (TCy) to spend and that the labor and capital inputs have
given factor prices wo and ro respectively. The firm will have
solved this problem if it achieves a tangency between its given
isocost constraint and the highest attainable isoquant (see
Figure 1). At the point of tangency the slope of the isoquant and
the slope of the isocost curve are equal. This means that the
negative of the ratio of the two marginal products (-MP /MPx) is
equal to the negative of the ratio of the two factor prices (-wo/ro).
Multiplying both ratios by —1 yields MP_/MPx = wy/rg or MP./wg =
MPx/ro. The last of these equations says that the firm will have
allocated its resources between labor and capital in an optimal
fashion if the last dollar spent on labor gives the same rate of
return as the last dollar spent on capital.

The second approach (see Figure 2) to choosing the optimal input
mix takes costs as the objective to be minimized and the level of
output as given. The optimum is now found where the lowest
attainable isocost line is tangent to the given isoquant — which
turns out to be the highest attainable isoquant in the previous
formulation of the problem. The second formulation is called the
dual of the first formulation of the problem. It should be obvious
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that the two approaches yield exactly the same solution to the
firm’s problem of choosing the optimal input mix that will maximize
profits.

These are the two diagramatic techniques that | explained in the
lecture.

3. One way of solving a constrained extremization problem
algebraically is to get rid of the constraint by substitution. This
will only be possible if we have an explicit algebraic form for the
constraint and the objective function.

EX: Max z = f(x,y) = X* + 3xy + y?
(x,y)
s.t. x+y=100.

We can think of the objective function as being a hill (the inverted
parabaloid in Figure 3) Obviously if we were unconstrained in our
choice of (x,y) commodity bundles we would choose the bundle
that would the maximum z, z. But our choices are confined to
bundles of x and y that lie along (or inside) the linear constraint.
This is equivalent to driving a vertical plane through the surface
as in Figure 4. Now the highest point that we can attain is zo
where x = Xo and y = yo . In terms of level curves we see in Figure
5 that our unconstrained choice would be z, but that we will
choose zo, at the tangency between the Imear constraint line
(with end points, x-bar and y-bar) and the highest attainable level
curve zo (at (Xo Yo ))-
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Now we can re-write the constraint as y = 100 - x and reformulate
the problem as:

Max Z = x? + 3x(100-x) + (100-x)%.
(x.y)

You should be able to show that dz = -2x + 100 so that
dx

Xo = 50 is a stationary point for the reformulated problem. We
then solve for yg = 100 — xo = 50 and so our solution to the original
problem is (Xo,yo0) = (50, 50).

4. In most cases in economics we cannot use the substitution
procedure. Also in economic theory we are not interested in
actually determining the stationary points -- rather we are
interested in the information about the nature of the economic
agent's equilibrium that is implicit in the solution of the constrained
extremization. In these cases we use a mathematical "trick" which
was devised by the French mathematician Lagrange (lah granj)
and is called the Lagrange Multiplier technique. This procedure
also converts the original intractable problem (extremization
subject to a constraint) into the easier problem of extremizing an
unconstrained function.
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EX. Say we wish to apply this technique to our problem already
solved via substitution. Then we proceed as follows:

(a) First set up the so-called Lagrangian Function
£(x,y,1) = f(x,y) - A[x +y - 100]

Notice that the Lagrangian, £, is a function of the three variables:
X, Y, and the Lagrange multiplier, A. Also note that the Lagrangian
is the sum of the original function (f(x,y)) and the expression A[x +
y - 100] which is the product of the unknown, A, and the term in
square parentheses. Observe that when the constraint is satisfied
the term in square brackets will be zero. Also note that it doesn't
matter whether we add or subtract the second term.

(b) We now have an unconstrained maximization
problem to solve; vis.

Max  £(xy,A)=x?-xy +y?- A[x +y - 100].
(X,y,2)

We proceed by calculating the three first order partials:

£x= 2X-y-A
£y=-x+2y-A
£,=100-x-y.
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(c) Set these partials (simultaneously) equal to zero and solve the
three equations for the three unknowns: Xy, yo, Ao; i.€.,

Ex =Ly =£,=0
=> £x=2x -y-A =0 2X -y = A
Ey=-x+2y-1=0 < X+t2y= A
£,=100-x-y=0 x+y =100

Notice that if £(x,y,A) is extremized then the constraint (x + y =
100) will be satisfied. The solution of our Lagrangian problem is X
=Yoo~ 7\.0 = 50.

(d) We should now check the second-order conditions (which are
laid out in section 5 below) to make sure we have a maximum.
However, in an economics context we can assume that the
~economic agent is in equilibrium and presumably can tell the
difference between a maximum and a minimum! Finally we
should evaluate the function at the stationary point; i.e., zo =
f(Xo,yo) = 2500.

4. We will know do a constrained maximization problem taken
from economics. A household is in equilibrium when it is
purchasing that bundle of goods which satisfies its budget
constraint and maximizes the household's utility. At that
equilibrium the household will be consuming a commodity bundle
which is on the highest attainable indifference curve. At that point
in the commodity space there will be tangency between the
indifference curve and the budget constraint.

The household's problem may be formulated as:
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Max U =U(xy) (xy) € (R°® U(0,0) = 0, Ux,Uy > 0, Uxx,Uyy <
0
(xy)

s.t. Pxx+Pyy=My.

The appropriate Lagrangian function is:
£(x,y,A) = UXy) - A(Mo - Pxx-Pyy).

The first order conditions are:

of = £x=0U-APx=Ux-APx =0

OX OX

oL = £y = oU- APy =Uy-APy=0
oy oy

Q£_=£k= Mo—PXX-PYy=O
OA

From which we obtain:
Ux = MUx = APx
Uy = MUy = 7\,Py

Pxx + Pyy =M
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and so the budget constraint is satisfied at the stationary point.
Solving the first two equations yields

Uy=Px or Uy=Uy=21
Uy Py Px Py

where A = gU the rate of change of utility associated with a
oMo

relaxation of the budget constraint.

Note that we are not able to determining Xo, Yo explicitly without
more information.

Second Order Conditions for a Constrained Extrema.

(1) fo(9y) - 2fGxTy + fy(9x)? < O then f is maximized.
(2)  fux (9y)° - 2fyGxGy + fiy(9x)* > O then f is minimized.
(3)  fu(Qy)* - 2f,Gxgy + f,y(9x)* = O then the test fails.

Where gx etc. is the partial derivative of the constraint with respect
to x, etc. This second order condition can be written as a
bordered Hessian — which we will leave to ECON 406 where you
will do constrained extremization in some depth.
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