MATHEMATICS REVIEW 9

FUNCTIONS OF TWO VARIABLES

1. Functions of a Single Variable (Refer to the LHS of Figure
1.)

f.R->R
s.t. y = f(x).
In this case the domain of f (Df) and the codomain of f (Cf) are

both sets of real numbers. This function maps the real line to the
real line. The function machine converts real x's into unique real

y's.

x— | f| > y=1(x) = a + bx +cx2.
(The fis supposed to be in a box.)
The graph of f (Gf) is a (one-dimensional) line in a two-
dimensional space -- the so-called Cartesian plane, RXR = R?,
Each variable must have its own axis -- a real line -- with the axes
(usually) drawn at right angles to one another and (usually) with

the same scale. Where f(xp) is the height of the graph above the x
axis at x = Xo.

2. Functions of Two Variables (Refer to the RHS of Figure 1.)
f.R° >R

s.t. z =f(x,y)
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In this case the domain of f (Df) is a set of ordered pairs of real
numbers (x,y)s which correspond to points in the real Cartesian
plane (R X R = R?) and the codomain of f (Cf) corresponds to the
real line. This function maps the real plane to the real line. The
function machine converts pairs of x's and y's into (unique) real
numbers (the Z's).

(x,y) — | f | — z =f(x,y) = 2 + 3x - 4xy + 3y?
xy) - | f| > z="f(x,y) = a+bx + cxy - ky?

The graph of f is a two-dimensional surface in a three-
dimensional space (one dimension for each variable). Where
f(Xo.Yo) is the height of the surface above the (x,y) plane at the
point with coordinates x = x,, and y = y,,.

A useful way to think about functions of two variables is to think of
the (x,y) plane as being covered by a grid, where each
intersection corresponds to a particular pair of real numbers. We
can then think of a number being attached to each intersection
point so that, for example, if we are plotting the first function
above, the grid point (2,3) has the number 11 attached to it and
the grid point (3,2) would have the number -1 attached to it.
These numbers represent the height of the surface above the
point in question. (See the third perspective) diagram in Figure 1
and the table at the top of page 133 of the handout.)

We can also represent the surface by drawing its contours
(which mathematicians call level curves); i.e., we can join up all
points in the plane (all (x,y) pairs) which have the same =z
coordinate. We can slice through the surface parallel to the (x,y)
plane (we can "decapitate" the surface) and project the "rim" of
the cut down onto the plane to see which (x,y) points in the plane
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correspond to the points on the surface at a given height.
(Compare with height above sea-level contours, isotherms and
isobars on meteorological maps). L = {(x,y) : f(x,y) = zo} is the set
of points in the (x,y) plane which lie beneath points on the
surface with the given height (zy). L is the level curve in the plane
that corresponds to the function taking the value z,. (Figures 2a —
2¢ go about here). See also Figure 6 p.134 which shows lines of
constant height on the surface of the production function, Q=100
and Q=120, and Figure 7 on the bottom half of p.135.)

3. Functions of N Variables

From an algebraic point of view these present no new problems,
but they cannot be handled easily, or at all, with conventional
perspective diagrams. A function of n variables (x1,X2, ... ,Xp) is a
mapping from the set of (real) n-tuples (points in an n-
dimensional space) to the real line where each image is unique:

f: (Xqy Xpyeee, Xn) = Y = (X4, Xo,enr, Xn) ((X45--., Xn) € RM)

In many cases the rule for finding the image (given the element in
the domain) will be an algebraic equation. Note that almost all
economic problems are described in terms of functions of n
variables (e.g., the consumer's choice of an optimal commodity
bundle consisting of n goods and services, the firm’s choice of the
optimal amount of each of n inputs to employ).

The graph of a function of n variables is an n-dimensional hyper-
surface in a n+1 dimensional space. We can represent an n-
dimensional surface in two dimensions by taking a cross-section
through the surface and projecting the "shadow" (what
mathematicians call a trace) of the cross-section onto the two-
dimensional plane we are interested in, holding all other
variables constant. That is, we cut through the surface parallel
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to one of the axes (we insert a plane into the space parallel to one
of the axes) and then project the image of the cut onto the plane.
This yields a conventional looking graph (line).

Returning to our “grid” interpretation of the function of two variables,
What we mean by a cross-section through the surface is a cut
through the surface along one of the grid lines i.e. along a line at
which one of the variable is being held constant. For example,
we could cut along the line parallel to the y-axis with x held constant
at 2, or at the level x=3, or we could cut along a line parallel to the

x axis holding y constant at y=4 or y=9.7. (The diagram on p. 135
shows cuts through the corn production function parallel to the
Nitrogen axis, holding Phosphate constant at the levels P=40 and
P=80. The top part of the diagram on p. 135 shows the graphs

of these cross-sections. The top part of the graph on p. 136 shows
a typical short-run Total Product of Labor curve that is a cross-
section through the production surface holding capital constant.)

Up until this point we have been treating our demand and supply
functions as functions of a single variable, price, but we know that
these functions really have many independent variables. For
example we know that the demand function is a function of the
form:

QY = f(Px, Ps, Pc, Y) ((Px, Ps, Pc, Y) € R" Px etc. >0 )

where Py is the price of x, Ps is the price of a substitute, P. is the
price w of a complement, and Y is real income. The conventional
demand curve is the shadow (trace) of the graph of the demand
function where all of the other variables (other than Q"x and Px)
are held constant, i.e. we fix the values of the other variables to
obtain a specific cross-section. (The graph of the demand function
needs one axis for each of the variables -- including the dependent
variable. We therefore expect the demand surface to be an n-
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dimensional surface.) If any one or more of the independent
variables changes its value then we move to a new cross-section
and the demand curve seems to shift.

4. Partial Derivatives. A partial derivative is a measure of the
slope of the cross-section through the graph of the function; it
measures the rate of change of the dependent variable with
respect to one of the independent variables, holding all of the
other independent variables constant. Partial derivatives are
marginals just like ordinary derivatives.

2
If z = f(x,y) (xy) e R)
then 0z =f(x,y)= lim f(xth,y)-f(x,y) if it exists
OX h—0 h
and oz =1f(xy)= lim f(x,y+j) - f(x,y) if it exists
oy j—0 j

Let z=2+3x-4y

then 0z = 3 = fy(x,y) and _0z = -4 = f(x,y)
OX oy

Letz = f(X,y) =a+bx+ cy + exy + mx2y + an2 + I'X2y3

then zx = fx (X,y) =b + ey + 2mxy + ny2 + 2rxy3 = 0z
OX

and zy =fy(x,y) =c+ex+ mx2 + 2nxy + 3rx2y2 = 0zZ.
oy
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Note that while partial differentiation looks complicated it is
actually a straightforward extension of single variable differential
calculus, using the standard rules (so there is nothing new for you
to learn!) and treating all variables, except the one with which
you are differentiating, as additive or multiplicative constants.
These constants are easily handled during differentiation (they
drop out if they are additive constants and stay in unchanged if
they are multiplicative constants). The only problem with partial
differentiation is that there is a lot more work to do and you have to
keep track of which things are varying and which are constant.

5. Higher order partial derivatives are also easily computed.
Note that if z is a function of two variables (x and y), so that z =
f(x,y), then f has two first order partials (fx, fy) and four second
order partials -- fxx and fyy and the two cross-partials, fxy and
fyx. fxy and fyx are usually equal; i.e., fxy = fyx for all of the
functions you are likely to meet with in economics contexts. The
second order partials have straightforward interpretations -- they
represent the curvature of the cross-section graph, just as the
first-order partials represent the slope of the cross-section graph.
That is, second order partial derivatives tell us how the first order
derivative changes as we increase the independent variable -
holding all of the other independent variables constant. The
second order derivative tells us about the curvature (concavity or
convexity) of the trace -- the graph of the cross-section. The
second order partials tell us the slope of the first order partials -
and therefore the slope of the marginal functions.

9’z d @3 oz d (az)
pw (X Y) p™ Y Ly (%Y) oy oy

Since f is a function of both x and y we can also calculate second
order cross-partial derivatives that tell us, say, how the derivative
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in the x direction changes as we increase the y independent
variable. That is, this cross partial derivative tells us how the slope
in the x direction changes as we shift the cross-section so that
the new “fixed” value of y is larger than before (and vice versa for
the other cross partial derivative).

52z o (oz &z o (oz
XDy fx(xy)= &(Ey_) oyox f (xy)= 5}7(&)

For the type of “well-behaved” function that we usually encounter
in economics the cross partial derivatives will be equal.

Let z=1f(x,y)=a+bx’ +cxy? (x,y)e R?

then 9z = fx(x,y) = 2bxy + cy’* 9z = fy(x,y) = bx* + 2cxy
OX oy

and fxx(x,y) = &z = 2by fyy(x,y) = &z = 2cx
ox? oy?

and fxy(x,y) = 8z = 2bx + 2cy = fyx(x,y) = 8’z .
0yox oxoy

Note that the cross partials are equal and so we have either got
the answer right or we have made canceling algebraic errors!

6. The Cobb-Douglas Production Function.
If Q = f(L,K) = ALaKb, A>0,0<a, b<1, f(0,0=0 ((L,K) e(R*)?

then 8Q = aALZTKP = aaL@L-1kP = aaL@KPL-T = gAL3KD)
oL L
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o0Q = a(_Q) =aAP_.=MP.> 0,
oL L

and 8Q = MP, =bALaKP-1 = p(ALBKPYK =b(Q)= bAP«> 0.
oK K

The second order partials measure the slopes of the marginal
functions:

Q= #aAL1KP = (a-1)aAL*2KP = a(a-1)AL2KPL 2
oL? L2

= a(a-1)(é\LaKb)= a(a-1)Q/L%< 0.
L

Q= abA La&KP-1 = (b-1)bAL? KP2 = b(b-1)ALAKPK?
K2 K3

= b(b-1)A2LaKb = b(b-1)Q/K?< 0.
K

Further

2
5°Q = sa(a-1)AL3 KP =(a-2)a (a-1)AL*3KP
oL’ oL

= a(a-1)(a-2)ALAKPL3

= a(a-1)(a3—2)(ALaKb) = [a(a-1)@-2)QJL® < 0.
L

2
2°Q = _ab(b-1)A LKD" = (b-2)b(b-1)AL® KD
oK’ oK
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= b(b-1)(b-2)ALAKPK?

= b(b-1 )(b-32)(ALaKb) = [b(b-1)(b-2)QJ/K> < 0,
K
and so the marginal product curves of the Cobb-Douglas
production function are proportional to their average product
curves (with the factors of proportionality being the respective
exponents), are strictly positive, and have negative and
algebraically increasing slopes.
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Level curves often have interesting physical interpretations. For example,
surveyors draw topographic maps that use level curves to represent points having
equal altitude. Here f(x, y) = the altitude at point (x, y). Figure 3a shows the
graph of f(x, y) for a typical hilly region. Figure 2 shows the level curves corre-
sponding to various altitudes.

274



1= () | fai) =Y -
Wo naX o) Po\&x\ v Yo 62,4
Plame wiida s \oamssdi
% A Waldak (2o).

F\'jure 2¢

275



Graph of a General, Hill-shaped Function
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Illustration of the Partial Derivative of z With Respect To x
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‘Plustration of the Partial Derivative of z With Respect to y
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