PART TWO

EXTREMIZATION MODELS USING UNIVARIATE
CALCULUS

MATHEMATICAL REVIEW 5

INTRODUCTION TO DIFFERENTIAL CALCULUS

NOTE: Chapter 4 of A&L covers all of the material on single
variable differential calculus that you need to know for the 208
course.

Because in economics we seldom have the luxury of knowing the
specific algebraic forms of the functions we study, the calculus we
do in ECON 208 does not require you to do much by the way of
algebraic manipulation, but it does require a good conceptual
grasp of the ideas underlying differential calculus.

Chapter 5 of A&L has some useful economic applications of the
technique).

Those of you who are new to calculus will need to study this
material intensively if you are to master it. Because of the
excellent coverage of the essential math in A&L | am going to
concentrate on the economic applications in the lectures,
assignments, handouts, and exams.

1. In economics we often need to calculate the slopes of non-

linear functions; e.g., to calculate mpc’s for generalized
consumption functions, to determine marginal cost for nonlinear
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total and variable cost functions, or to determine the elasticity of
demand of non-linear demand curves.

2. We will associate the slope of the non-linear function with the
slope of the corresponding tangent line drawn to the curve at the
relevant point. The slope of the tangent can be approximated by a
secant drawn between the point of interest and some other point
on the graph of the function. (See Figure 1.)

As we allow B to move along the graph towards A, the secant
(with slope Ay/Ax) becomes a better and better approximation to
the tangent, Ta, which at A, has the same slope as the graph of
the function; i.e., dy/dx. In other words as xg approaches xa the
approximation Ay/Ax gets closer and closer to the true value
dy/dx. The set of values of the secant approximations is a
sequence of real numbers, such as 4, 4.12, 4.194, 4.203, 4.4, ...,
4487, 4.488, 4.921, 4.934, 4.956, 4.971, 4.989, 4.991, 4.998,
4.999, 4.9995, 4.9998, 4.9999, ... etc. It appears that these
numbers are getting closer and closer to the number 5 as B is
getting closer and closer to A. Equivalently, we can say that as h
= Ax gets closer and closer to zero it appears that the secant
approximation is getting closer and closer to 5. It is the job of the
mathematician to prove this assertion. If such a proof is
forthcoming (it involves fearsome things called epsilons and
deltas which you do not have to worry yourselves about --
mathematicians have been doing these proofs for one hundred
and fifty years and so we can assume that they have got them
right!) we then say that the sequence of secant approximations
possesses a limit (the number 5), or that Ay/Ax = [f(x+h)-f(x)]/h
approaches 5 as Ax=h approaches zero (they may never actually
take the value zero). If this limit exists then we say that f is
differentiable at x = xa and that the derivative of f, evaluated at xa,
is equal to that limit (in our case 5). If the function has a derivative
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at each point in its domain then we say that it is a differentiable
function. In ECON 208 (and in most of your upper division
courses!) we will assume that the functions we encounter are
differentiable functions (actually all we usually require is that the
function possesses continuous first and second order derivatives;
third order derivatives if we are interested in the curvature of the
graph of the marginal function).

3. DEFINITION

If lim Ay = lim f(xth)-f(x) exists
AX—>0 Ax h—0 h

then we call this value the derivative of the function which we
denote by dy/dx = f'(x);

le., dy = Ilim f(x+h)-f(x) =f(x)
dx h—0 h

= lim _Ay if that limit exists.
x—0 AXx

The derivative is a derived function which is brought out by the
notation f(x) (x € Df where Df is usually some subset of the set of
real numbers). The height of the f(x) graph -- the value of dy/dx
at a particular value of x in the domain of the function -- is equal to
the slope of the graph of the original function, f. Since the slope is
unique and defined at every x for which f is differentiable, f' is a
function in its own right (and in economics contexts is usually
assumed to be at least twice differentiable itself, which we
indicate by writing feC?).
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In economics all marginals are derivatives: e.g. marginal cost is
the rate of change of total cost with respect to output and hence is
a measure of the slope of the graph of the total cost function;
marginal revenue is the rate of change of total revenue with
respect to output and hence is a measure of the slope of the
graph of the total revenue function; marginal product is the rate of
change of total product (output) with respect to changes in labor
(or capital) input and hence is a measure of the slope of the graph
of the total product function; the marginal propensity to consume
is the rate of change of consumption with respect to income and
is therefore a measure of the slope of the graph of the
consumption function.

Differentiation is a technique in which: (a) we approximate one
function, f, by a simpler function, T(x) -- the linear tangent
function; and (b), strictly speaking, all changes are assumed to be
“infinitesimally” small (to ensure that the approximation is a “good”
one). Differentiation is therefore a “myopic” technique, but
nonetheless immensely powerful when used judiciously.

It is very important that you keep two intuitive concepts of the
derivative in mind. We can think of derivatives as measuring the
slopes of the graphs of the function in question; and we can think
of the derivative as a measure of the rate of change of the
dependent variable of the function with respect to (“infinitesimal”)
changes in the independent variable (or, sometimes, a
parameter).
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MATHEMATICAL REVIEW 6

BASIC RULES OF DIFFERENTIAL CALCULUS

1. (ADDITIVE) CONSTANT RULE

If y=fx)=c (xeR), (ceR)

thendy =f(x)=0 (x € R).
dx

Lety =f(x) =4 thendy =f(x) =0.
dx

Letl=1(Y) =1, thendl =0.
dY

Let FC = FC(Q) = F, then dFC = 0.
dQ

2. IDENTITY FUNCTION RULE

If y=fx)= x (xeR)

thendy =f(x)= 1 (x € R).
dx '

Let AS = g(Y) =Y then dAS = 1.
dyY

Let Q=f(Q) =Q thendQ=1.
dQ
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3. MULTIPLICATIVE CONSTANT RULE FOR IDENTITY
FUNCTIONS

If y = g(x) = b f(x) (x, b € R), where fis an identity function

thendy =g'x)=bf(x)=b (x e R),i.,e.y=bf(x)=b.1=b.
dx

Let TR =R(Q)=PyQ (perfectcompetition)

then dTR=MR=R(Q)=P,
dQ

Let W=1(L)=woL (perfect competition in the labor market)

then dW =f(L) = wo where W is the “wage bill” and wy is
dL

the real wage.

4. POWER FUNCTION RULE

f  y=fx)=x" (xeR), (heR)

then dy = f(x) = nx""1 (x € R).
dx

Lety = x* then dy/dx = 2x
Lety = x"2 then dy/dx = 14 x™2

Lety =x°=1 then dy/dx = 0x%>" =0
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Lety = x*' then dy/dx = 47x*°

5. GENERAL MULTIPLICATIVE CONSTANT RULE

fy=fx)=bx"  (xeR), (b,neR)

then dy = f(x) = bnx""? (x € R).
dx

Let TC=TC(Q)=VC(Q) =bQ% (Q € RY

then dTC =dVC =3bQ?
dQ dQ

Let Q=f(L)= AL* A>0, 0<a<1 (Le R®)where A, o, € R,

then dQ/dL = f(L) = Ao L*'=a AL* = o (AL*)L" = o QIL,

i.e. MPL = o AP,

6. SUM and DIFFERENCE RULES

(a) If y =f(x) and z = g(x) and w = y + z = h(x) = f(x) + g(x)

then dw =dy +dz or _d_)'[\’= h'(x) = f'(x) + g'(x).
dx dx dx dx

Let y=3+2x+4x°

thendy =0+ 2+ 8x =2 + 8x.
dx
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Let AD=C(Y)+ o+ Go+ Xo

then dAD = C'(Y) + 0 + 0 + 0 = C'(Y).
dY

Let TC=TC(Q) = FC(Q) + VC(Q) = Fo + VC(Q)

then dTC = 0 + VC'(Q) = VC'(Q) = MC.
dQ

(b)Ify=1f(x)and z=g(x) and w = h(x) =f(x) -g(xX) =y -z

then dw=dy-dz or dw = h'(x) = f'(x) - g'(x).
dx dx dx dx

If y= f(x) = 3x° - 4x°

then f‘(x)‘= dy/dx = 6x - 12x°

If  TI(Q) = R(Q)- C(Q)

then IT'(Q) = R'(Q) - C'(Q) = MR - MC.

If  AD(Y) = C(Y) + I(Y) + G(Y) + X(Y) - M(Y)
then AD'(Y) = C'(Y) + I'(Y) + G'(Y) + X'(Y) - M'(Y)
=C'(Y)+0+0+0-M(Y)

= C'(Y) - M(Y)

= c(1-1)Y - m(1-t)Y > 0.
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Figure 1
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7. PRODUCT RULE

If y =f(x) and z = g(x) and w =h(x) = f(x)g(x) = yz

thendw=dyz+ydz or h'(x)="f(x)g(x) + f(x)g'(x).
dx dx dx

Let y=(2x-1)(3% +2)

then dy = (2)(3x* + 2) + (2x - 1)(6x)
dx

= 6x° + 4 + 12x° - 6x
= 18x% - 6x + 4
= 2(9%° - 3x + 2).

Let TR =f(Q)=PQ)Q

then MR=dR=dPQ+PdQ=dP Q+P,
dQ dQ dQ dQ

hence MR=dP.Q.P+P.P=dP.Q.P+P.
dQ P P dQ P

ButPED=dQ.PandsodP.Q =1/PED,
dP Q dQ P

hence MR = P(1 + 1/ PED).

(Show that MR = Py under the special case of perfect competition.
Show that P is always equal to AR.)
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8. QUOTIENT RULE

If y=1(x)andz=g(x)andw = h(x) =f(x)/g(x) =y/zz=g(x) # 0

thendw=dyz-ydz or h'(x) =f(x)a(x) - f(x)q'(x) .
dx dx dx [9(x)]?

Z2

Lety=1and z=x thenw = 1/x and so

dw=d1.x-1. dx
dx dx dx
[X]?

1.
X2
Let y=(2x+4)(x-2) (x e Rand x # 2)

thendy = (2)(x -2) - (2x +4)(1)=2x-4-2x-4=0.
dx (x - 2)° (x - 2)°

Let TC =C(Q), C(Q)>0, C(0)=F,and (Q € R%

Then AC= TC=C(Q) (QeR") [i.e, Q%0
Q Q

andso dAC=C'(Q).Q-C(Q).1 whereC'(Q)=MC
dQ Q°

=C'(Q)-C(Q) .1 (where C(Q) = AC),
Q Q Q Q

234




hence dAC = 1[C'(Q) - C(Q)] = 1 [MC- AC].
iQ Q Q Q

Note that this is a perfectly general result and could be proved for
y = f(x) and d(y/x).
dx

You should show that this result holds for the AR, AVC, AP,
APk, and apc functions as well as your GPA.
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MATHEMATICAL REVIEW [OPTIONAL]J**

CHAIN OR FUNCTION-OF-A FUNCTION OR
COMPOSITE FUNCTION RULE

If z=g(y) and y = f(x) (x eR)
then z = h(x) = g[f(x)] h=gof: x— g[f(x)] (wesayhis
a function of a function or a composite function) and

h'(x) = gTf(x)] . f(x) (x eR)

or dz=dz.dy.
dx dy dx

Let z=2y?andy = 3x (x eR)

then dz = (4y)(3) =12y = 12(3x) = 36x.
dx

Remember we are differentiating with regard to x and therefore
we need to rewrite 12y into a form just involving x.

Let z=4y*’+2yandy=2x+1 (xeR)

then dz = (12y° + 2)(2) = 24y* + 4 = 24(2x + 1> + 4 (xeR).
dx

Let Q = Q(L) (LeR®) and Q'(L) = dQ = MP. and P = P(Q) = AR
dL
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Let y= V(bx+cx*)?® =(b+ cx*)??

then dy = (3(bx + cx*)"?) (4cx?).

dx 2
Let y=(a+bx)"?=+(a+bx)
then dy = (1(a + bx®)™"? (2xb) = bx .
dx 2 v (a + bx?)
Let y = u” where u = f(x) (xeR) (xeR, x > 0)
then g\[—1u1/2f'(x)-1(1)f'(x)—f'x
dx 2 2 u* 2Vf(x)
LetY® =1 A; where A=Co+1p>0 and0O<c<1 (Y e R
1-c

then dY®=dY® . dA=1 .1=_1 =k>1 (a shift or intercept
dC dA dC 1-c 1-c multiplier).

Alternatively if we write z=1-c then Y =z A and

dY€=(z? A)(1)—(1A)(1)— (1)(1A) dy®v.©
dc (1-c)? (1-c)*> 1-c 1-c dCo

(a pivot multiplier).
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(QeR®) -- the AR function which is the inverse function of the (1:1)
demand function. Then TR = P(Q)Q = P[Q(L)]Q(L) = f(L)

and so dTR =dTR . dQ
d. dQ dL

i.e., dTR = MRP, = d{P[Q(L)] . Q(L)}
dL dL

= dP[Q(L)] Q(L) + P[Q(L)] dQ(L)
dL dL

=dP.dQ.Q+
dQ dL

=[dP . Q + P]. dQ
dQ d

P.dQ
dL

—

=MR.MP_ .

A special case of the Chain rule arises when y = g[f(x)] = f(x)]",
i.e., the g function is a power function, then

= g'f(x)IF(x) = n[fx)]™" . F(x).
dx

Lety = (a + bx + cx?)*

then dy = (4(a + bx + cx?)*) (b + 2cx).
dx
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ECONOMIC THEORY 11
ELASTICITY

INTRODUCTION

1. Economists want to answer questions such as: how much
does Y change when X changes? That is, we would like to
be able to say something about the size of AY brought about
by a change in AX. This would seem to take us out of the
qualitative world in which we have been operating until now
and into the world of quantitative analysis. However, as we
shall see, there are qualitative things that can be said about
this topic.

2. At first sight it would appear that we could use the slope of
the graph of the function relating Y to X to answer our
question since the slope coefficient is AY/AX, but
unfortunately the slope coefficient is not a pure number
because its magnitude depends on the units in which Y
and X are measured. (Since you can now do simple
differential calculus we will use our derivative notation to
indicate the slope of the graph of the function at a point on
that graph, i.e. we will use dY/dX rather than AY/AX,
although for linear functions the two ways of measuring the
slope yield the same answer.)

This point about units of measurement may be more obvious

if we ask a slightly different question: which is more

responsive to changes in price — the quantity demanded of

Cadillac Sevilles or the quantity demanded of table salt?

Specifically, say that we know that the price of Cadillac

Sevilles fell by $3,000 last year and that sales increased by
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