MATHEMATICAL REVIEW 4

SIMULTANEOUS LINEAR EQUATIONS

1. NUMBERS

Say
$$y_1 = f(x) = 2 + 3x$$

 $y_2 = g(x) = 12 - 2x$
 $f(x) = g(x)$.
Then $2 + 3x^e = 12 - 2x^e$
therefore $x^e = 2$
and $y^e = 2 + 3(x^e)$
therefore $y^e = 8$.
[Figure 1 goes here.]

2. SOLUTIONS

The solution set, S, of a set of two simultaneous equations is the set of x-y values that simultaneously satisfy the equations and therefore are coordinates on both curves, i.e.

$$S = \{(x,y): f(x)=g(x)\}.$$

In our numerical case the two linear equations in two unknowns (variables) possess a **unique** solution because they have different intercepts and slopes. There will be **no solutions** at all if

the equations have *different intercepts* but the *same slopes* (in which case the lines are *parallel*), and there will be an **infinity of solutions** if the equations have *identical intercepts and slopes* (in which case the lines are *coincident*). If the equations possess at least one solution then they are said to be *consistent*, otherwise the equations are referred to as being *inconsistent*.

<u>slope</u>	<u>y-intercept</u>	<u>nature</u>	# solution	s type
same	same	coincide	infinite	consistent
same	different	parallel	none	inconsistent
different	different	intersect at exactly one point	unique	consistent

[Figure 2 goes here.]

3. ALGEBRA

If
$$y = f(x) = a + bx$$

 $y = g(x) = c + dx$
 $f(x) = g(x)$ where $b \neq d$

then
$$a + b x^e = c + d x^e$$

hence $b x^e - d x^e = c - a$
or $d x^e - b x^e = a - c$

therefore
$$(d-b) x^e = a - c$$
 and
$$x^e = \underline{a-c}$$
 (since d-b \neq 0).
$$y^e = a + b x^e$$

$$= a + b(\underline{a-c})$$

$$d-b$$

$$= a(\underline{d-b}) + b(\underline{a-c})$$

$$d-b$$

$$= a\underline{d-ab} + \underline{ba-bc}$$

$$d-b$$

$$y^e = \underline{ad-bc} .$$

Note that there is no necessity for x^e and/or y^e to be positive.

d-b

(Interpret the **three** cases specified in 2 above in terms of the algebra; i.e., when will we get *no solution*, an infinity of solutions, a unique solution?).

4. INTERPRETING THE SOLUTIONS

Assume that we start on the vertical axis where x is equal to zero. Then the numerator of x^e is either zero because a=c or there is a positive gap between the two vertical intercepts with a>c or a<c. If

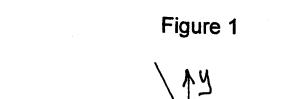
a=c then the graphs of the two functions intersect at that point and $x^e = 0$. But if a>c or a<c then the graphs do not intersect on the vertical axis and so xe will not be zero. If a>c then this gap must be eliminated if the two graphs are to intersect and the rate at which this gap is being eliminated is given by the denominator of the x^e equation, d-b the difference between the slopes of the two graphs. If d>0 and b<0 then the two graphs will converge somewhere between a and c and there will be a corresponding equilibrium value for x. If the gap between a and c is very large and the difference between the slopes is small then we will have to move a long way to the right in order to reach the point of intersection between the two graphs and xe will be large, whereas if the gap between a and c is small and the difference between the two slopes is large then it will require only a small change in x to arrive at the intersection point of the two graphs and so x^e will be small. (If the slopes of the two graphs are equal then d = b which means that the graphs are parallel and d - b = 0 which means that the equation for x^e has no solution because division by zero is not a defined mathematical operation.) You must study the possible configurations of a, b, c, and d and determine how each one leads to a different set of equilibrium values for x and y. Note that mathematically we are not confined to strictly positive solution values for the two dependent variables. Notice also that the numerator of the equation for y^e is the distance between the horizontal intercepts of the graphs of the two functions, that is ad $bc > 0 \Leftrightarrow (-a/b) - (-c/d) > 0$.

5. LINES AND PLANES IN 3-SPACE

One of the skills you need to acquire in Econ 208 is the ability to **generalize** a result. You should be able to convince yourselves that the following results hold for **three** simultaneous linear equations in **three** unknowns, where the graphs of the functions

are **two dimensional planes** in a **three dimensional space**. There are five possible outcomes:

- (a) No solutions (3 parallel planes).
- (b) No solutions (2 of the planes are parallel).
- (c) Infinitely many solutions (3 coincident planes).
- (d) Infinitely many solutions (3 planes intersecting in a line).
- (e) One solution (3 planes intersecting at a point).



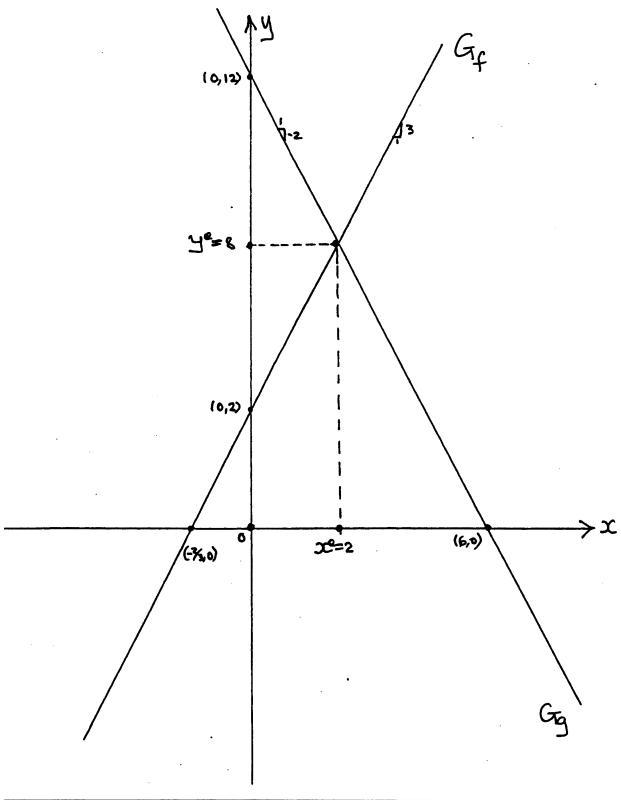


Figure 2

